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Educational Activity 

A number of students participated in the program as evidenced in the above publications. Three of 
the students have since graduated with a Ph.D and one is now a faculty member in a tenure track 
position. The others have taken postdoctoral positions including one at AT&T. Two other students will 
be graduating within the next 18 months, including the student who has developed the low temperature 



nonlinear optical NSOM. Three new students have just joined the group and will be involved in the new 
program. 

BRIEF OUTLINE OF RESEARCH FINDINGS: 
All of the research findings presented in this report have been reported in the annual reports. However, 
for completeness, we summarize some of the most exciting results. 

This work focuses on developing and applying the necessary methodology to study electronic and 
optical properties of systems characterized by nanoscopic structure. The work includes critical 
fundamental studies in high dimensional structures to clarify fundamental light-semiconductor 
interactions problems as well as establishing the first measurements of the coherent nonlinear optical 
response and coherent control on single quantum dots. The work also includes development of the first 
low temperature near field scanning optical microscope (NSOM) for nonlinear optical spectroscopy. 

During this program, the following major developments were achieved: 

Measurement of the ultrafast two-photon induced coherent exciton oscillation and the exciton 
Raman coherence demonstrated the important role of exciton-exciton correlations. 

The data shows clear evidence of the presence of exciton-exciton interactions leading to correlations. 
The measurements demonstrate the existence of Raman coherence between the light-hole and heavy- 
hole excitons as observed through detection of the time evolution of the relative phase between the two 
states of the system. In Fig. la, simplified 2-electron model is provided which shows the result of the 
perturbation solution of the density matrix equations. Only in the presence of exciton-exciton 
interactions are the beats observed in the measurement as seen in the model prediction of Fig. lb. 
Figure 2 shows the experimental observation confirming the prediction.  

12 3 4 
Delay IT, 

Figure 1. The Ih-hh interaction produces bound or scattering 

states \y/,) (a) and produces Raman quantum beats (b: solid), 

which would be absent for noninteracting excitons (b: dashed). 
Energy differences have been greatly exaggerated for clarity. The 
Raman period and frequency are related by TR£lR =2,71. 

Figure 2. (a). Raman coherence oscillations appear in homodyne- 
detected FWM for the tuning shown in the inset .   The pulse 

bandwidth is 2 meV, and the total excitation density is 9xl0'5 cm" 

3. (b). For a slightly different tuning, the beats are suppressed. 
(The overall sign of the DT response changes from (a) to (b), 
reflecting the sign change in EID as the laser is tuned closer to the 
lh exciton resonance.)  



In collaboration with D. Gammon's group at the Naval Research Laboratory, we reported the 
coherent nonlinear optical interaction of a single isolated quantum dot exciton. The 
measurements provided data on the relaxation and dephasing rates of the dot as well as 
demonstrating the presence of inter-dot coupling. 
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Figure 4 High resolution spectrum of the degenerate (upper 
curve) and nearly degenerate nonlinear response of a single QD 
resonance as a function of A, = co2 - a>0 for fixed detunings of 

Aj = cot - ©0 (located by the arrow). The data shows a clear 

tracking of the peak of the response, though lagging, with the 
position of m . (Solid lines are a guide to the eye.) 

Fig. 3 (a) The PL spectrum through a 0.5 /im aperture, (b) The 
fully degenerate nonlinear spectrum (i. e. <», = a>2) through the 
same aperture. Many of the sharp lines corresponding to single 
QD resonances appear in both spectra, however, other resonances 
are visible in just one spectra demonstrating the complementary 
character of the probing techniques, (c) The nonlinear response as 
a function of a>2 when wl remains fixed at the position indicated 
by the arrow. (Right inset) A Lorentzian squared fit to a high 
resolution degenerate nonlinear response. (Left inset) The power 
dependence of the signal, showing a linear behavior as expected 
for the third order nonlinear response at low power. Saturation 
occurs at higher power. 

In this new result, we reported the first coherent nonlinear laser spectroscopy measurements on a 
single quantum dot exciton. The measurements were based on degenerate and nearly-degenerate four- 
wave mixing measured through phase sensitive homodyne detection using high resolution spectroscopy 
techniques developed by us on atomic systems.   The measurements in Fig. 3 compare the coherent 



nonlinear optical response to PL. The bottom curve in Fig. 3 shows the nearly degenerate response 
demonstrating the response is fully resonant. The weaker resonances on the lower energy side 
demonstrate the presence of inter-dot relaxation. Figure 4 is a high-resolution spectrum of the nearly- 
degenerate response for an isolated quantum dot exciton as a function of pump detuning from resonance. 
Comparison with a model for the coherent nonlinear response shows that this data demonstrates the 
absence of extra-dephasing in these dots revealing an unexpected robustness in their quantum coherence 
against dephasing processes. The data also shows the onset of two-beam coupling. 

In an extension of this collaboration with D. Gammon (Professor Lu Sham at UC-SD is also 
collaborating with us on this problem), we have demonstrated the role of exciton-exciton 
correlation in a single quantum dot showing the existence of optically induced two-electron 
entanglement.  

-3-2-10   12 3 4 5 6 7 8 
Probe Detuning (T) 

FIG. 5. (a) Band diagram for heavy-hole exciton transitions, (b) Four- 
level model for incorporating the four-particle Coulomb correlation into the 
problem, (c) Theoretical prediction for the non-degenerate experiment, 
assuming that the contribution from the levels beyond single-exciton levels 
can be neglected due to the Coulomb interaction. Curves in (A) show the 
incoherent contribution from the ground state depletion. Curves in (B) 
show the coherent contribution from the second order Zeeman coherence. 
Curves in (C) are the superposition of both contributions. In the absence of 
correlation, no signal at all would be observed.  
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Energy (meV) 
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FIG. 6. Non-degenerate coherent nonlinear response. 
The pump is placed at the o- (lower) state with a- 

polarization. The probe is scanned across the o"+ state 

(upper) with a+ polarization. The result shows 

interference lineshape identifying the Coulomb 
correlation and the contribution from Zeeman coherence 
(see text for details). 

In the quantum dot system examined above, the correct minimal description is that of two electrons 
described by a basis state formed by correctly antisymmetrized eigenfunctions.  Figure 5a shows the 



representation based on zone center conduction and valence band electrons. Figure 5b shows the 
equivalent exciton representation formed by accounting for the antisymmetrization of the wave function 
in the two-electron basis. The results of a simple analysis of the coherent nonlinear response based on 
the density matrix master equations is given in Fig. 5c where the pump field at E^co^ is tuned to the a- 

transition and probe field E2((02) is tuned to the o+ transition. In the case of no interaction between the 

two electrons, there is no signal in the region of the G+ transition. In the presence of just ground state 

depletion effects (saturation), the upper curve shows a simple resonance located at the center of the a+ 

transition which does not move with tuning of cq. However, the second curve shows the effect of 
including the Zeeman coherence between the two levels. The Zeeman coherence represents a coherent 
superposition of the two 2-electron states excited by the a + and a- optical fields. This superposition 

represents an optically induced entanglement of the two states. The final curve represents the expected 
coherent nonlinear optical response in the presence of both contributions. The experimental result is 
quite profound and is shown in Fig. 6. The data clearly shows the unmistakable signature of optically 
induced entanglement and Zeeman coherence. The results show that our understanding of this system is 
apparently correct and that we have now established a means to demonstrate entanglement. Our future 
work will focus on entanglement of two dots. 

Based on the coherent nonlinear optical response of the quantum dot exciton, we made the first 
demonstration of coherent optical control of the exciton and demonstrated the basic aspects of 
wave function engineering. 

Using these "solid state atoms", the laboratory has now demonstrated that it can extend the concepts 
of coherent control and wave function engineering developed in atomic/molecular systems and higher 
dimensional semiconductor structures to the limit of a single quantum system in a zero-dimensional 
quantum dot. Such proposals have been envisioned for implementation of various schemes for quantum 
computation and coherent information processing and transfer in which it is important to address and 
coherently control individual quantum units. The quantum dots described above were used for these 
experiments. Symmetry breaking by the island structure mixes the polarization leading to x- and y- 
states of the exciton and lifts the degeneracy (data not shown). 

The excitonic wave function was manipulated and monitored on a time scale short compared to the 
loss of quantum coherence by controlling the optical phase of two picosecond pulses through timing and 
polarization. Production of the two pulses and timing control was achieved using a sub-wavelength- 
stable Michelson interferometer to beam-split, delay and recombine the output of a picosecond laser. 
The experiments concentrated on the |£i) state which shows a linewidth of 17 |xeV and a fine structure 

splitting of 60 |xeV (Fig 7a, inset). We probed the state of the system by monitoring the luminescence 

from \EQ). 

Figure 7a shows the luminescence intensity as a function of the delay time between the phase-locked 
pulses when both pulses are linearly co-polarized along the Y-axis of the crystal. The resultant quantum 
interferogram represents the autocorrelation function of the excitonic wavefunction corresponding to 
state \EIY). The exponential decay arises from the loss of coherence. 
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Figure 7. The amplitude of the oscillation in PL as a function of 
delay (large filled circles) when both pulses are co-polarized along 

the y-axis, thus exciting just the |^iy) state. This measures the 

autocorrelation function of the excited state wave function. The 
lower inset shows an expanded view around tc=40 ps 
(corresponding to the shadowed region) of the small filled circles 
showing the oscillations in PL as a function of tf. The large filled 
circles in the main figure are determined from a fit of the 
amplitude of oscillations as a function of tf. The amplitude of the 
oscillations shows an exponential decay over long times. The 
auto-correlation function of the pulse is also plotted for reference 
(open circles). Top inset: Schematic of the experimental setup. 
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Figure 8. A) The excited state auto-correlation function of 
the excited state wave function, as in Fig. 2 but for both 
pulses co-polarized and rotated to equally excite both the 

l^ix)) an(* \E\Y) 
states- The temporal evolution shows 

oscillations as the wave function oscillates between the two 
X- and Y-orthogonal states. The oscillation period 
corresponds to the inverse of the difference frequency 
between the two optical transitions. B) The cross-correlation 
function between two excited state wave functions generated 
by orthogonally polarized optical pulses. The relative phase 
of the two superposition of states produced by each pulse 
differs by n. The top inset in each figure shows the 

calculated oscillations in the absence of dephasing.  

Even more interesting is the behavior shown in Fig. 8a in a second experiment when the polarization 
of the two pulses remains linearly co-polarized but oriented (-45°) to excite both the IX and 1Y states. 
A non-stationary wavefunction is produced which is composed of a coherent superposition of |£ix) ar,d 
\ElY) states. The autocorrelation shows the wavefunction oscillating between two orthogonal states, 

|£ix) + |£iy) and |
£

1X)~|
£

1K)- 
Tne oscillation period corresponds to the inverse of the difference 

frequency between the two optical transitions. 

In the third experiment the polarization of the second pulse was rotated 90° relative to the first pulse 
of Fig 8b. The result was the creation of a superposition of the states similar to Fig 8a, but with a n shift 
in the quantum phase with respect to the reference wavefunction. The result is seen as a phase shift in 
the beating in Fig 8b. In this case the measurement reflects a cross correlation between the state of the 
system excited with the first pulse and the state of the system excited with the second pulse and 
demonstrates the ability to create a target wave function. 

The results of these experiments were published in Science. 



We developed and built a low temperature NSOM and recorded the first images of the nanoscopic 
coherent nonlinear optical response. The capability allowed us to map the wavefunction of 
localized exciton quantum dots. 

A major objective of the past several years has been to develop a methodology that allows us to 
probe individual quantum dot structures at high density without resorting to apertures. To this end, we 
developed a low temperature near field scanning microscope (NSOM) designed to work based on 
detecting the coherent nonlinear optical response. Our first high resolution measurements are shown 
below. The results are quite profound and demonstrate the complexity of the localization of the dots in 
highly disordered systems. The data actually provides the first mapping out of the wavefunction of such 
a system.  
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Figure 9: Degenerate nonlinear optical response images taken over 2 ixm x 2 um area at energies indicated in the spectrum (which was 

taken near the center of the images). Red-yellow represents positive nonlinear signal (or induced transmission), and blue represents 
negative nonlinear signal. Images are scaled independently. A) 1633.0 meV w/ relative signal of 2.14 B) 1633.6 meV w/ relative signal 
of 6.37 C) 1635.3 meV w/ relative signal of 1.55 D) 1642.7 meV w/ relative signal of 3.72. These images can be considered mappings 

(within the resolution of the probe) of the center-of-mass wavefunction \j/(x,y)| of the exciton in the disordered 2-D potential of the 

quantum well. 


